Sodium depletion enhances renal expression of (pro)renin receptor via cyclic GMP-protein kinase G signaling pathway.

نویسندگان

  • Jiqian Huang
  • Helmy M Siragy
چکیده

(Pro)renin receptor (PRR) is expressed in renal vasculature, glomeruli, and tubules. The physiological regulation of this receptor is not well established. We hypothesized that sodium depletion increases PRR expression through cGMP- protein kinase G (PKG) signaling pathway. Renal PRR expressions were evaluated in Sprague-Dawley rats on normal sodium or low-sodium diet (LS) and in cultured rat proximal tubular cells and mouse renal inner medullary collecting duct cells exposed to LS concentration. LS augmented PRR expression in renal glomeruli, proximal tubules, distal tubules, and collecting ducts. LS also increased cGMP production and PKG activity. In cells exposed to normal sodium, cGMP analog increased PKG activity and upregulated PRR expression. In cells exposed to LS, blockade of guanylyl cyclase with 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one decreased PKG activity and downregulated PRR expression. PKG inhibition decreased phosphatase protein phosphatase 2A activity; suppressed LS-mediated phosphorylation of extracellular signal-regulated kinase, c-Jun N-terminal kinase, c-Jun, and nuclear factor-κB p65; and attenuated LS-mediated PRR upregulation. LS also enhanced DNA binding of cAMP response element binding protein 1 to cAMP response elements, nuclear factor-κB p65 to nuclear factor-κB elements, and c-Jun to activator protein 1 elements in PRR promoter in proximal tubular cells. We conclude that sodium depletion upregulates renal PRR expression via the cGMP-PKG signaling pathway by enhancing binding of cAMP response element binding protein 1, nuclear factor-κB p65, and c-Jun to PRR promotor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vivo regulation of renal expression of (pro)renin receptor by a low-sodium diet.

Effects of low salt (LS) on (pro)renin receptor (PRR) expression are not well established. We hypothesized that LS enhances renal PRR expression via the cGMP-protein kinase G (PKG) signaling pathway. Sprague-Dawley rats were fed a normal-salt (NS) or LS diet associated with intrarenal cortical administration of vehicle (V), the nitric oxide (NO) synthase inhibitor nitro-l-arginine methyl ester ...

متن کامل

Angiotensin II stimulates renin in inner medullary collecting duct cells via protein kinase C and independent of epithelial sodium channel and mineralocorticoid receptor activity.

Collecting duct (CD) renin is stimulated by angiotensin (Ang) II, providing a pathway for Ang I generation and further conversion to Ang II. Ang II stimulates the epithelial sodium channel via the Ang II type 1 receptor and increases mineralocorticoid receptor activity attributed to increased aldosterone release. Our objective was to determine whether CD renin augmentation is mediated directly ...

متن کامل

Eupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway

Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...

متن کامل

PKC-α-dependent augmentation of cAMP and CREB phosphorylation mediates the angiotensin II stimulation of renin in the collecting duct.

In contrast to the negative feedback of angiotensin II (ANG II) on juxtaglomerular renin, ANG II stimulates renin in the principal cells of the collecting duct (CD) in rats and mice via ANG II type 1 (AT1R) receptor, independently of blood pressure. In vitro data indicate that CD renin is augmented by AT1R activation through protein kinase C (PKC), but the exact mechanisms are unknown. We hypot...

متن کامل

Resveratrol at anti-angiogenesis/anticancer concentrations suppresses protein kinase G signaling and decreases IAPs expression in HUVECs.

BACKGROUND Resveratrol increases nitric oxide (NO) production via increased expression and activation of endothelial-form-NO-synthase (eNOS) in endothelial cells. However, the role of downstream cGMP/protein kinase G (PKG) signaling, a pathway activated by NO/eNOS, in pro- and anti-angiogenic effects of resveratrol is still unclear. MATERIALS AND METHODS Endogenous NO/cGMP/PKG pathway and dow...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Hypertension

دوره 59 2  شماره 

صفحات  -

تاریخ انتشار 2012